

Native Breeds at Risk

Definition

What is native?

 Originating and initially recognised in a particular country (i.e. country of origin); a breed existing in the countries where it originated

Native Breeds at Risk

Definition

How to define 'at Risk':

- Progress impeded by lack of harmonisation
 Seminar convened in London 16-17 February
- ~ global delegates: FAO and RBI
- ~ regional delegates: ERFP, EAAP and ELA
- ~ national delegates: Defra and RBST
- \square ~ invited specialists

Harmonisation?

Four steps possibilities:

- Basic definitions what is a breed?
- Indicators of Endangerment which breeds are at risk?
- **Factors of Prioritisation** which to support?
- <u>Management of Breeds at Risk</u> (not covered as policies and programmes of management are subject to national decisions)

Indicators of Endangerment

Four primary indicators -

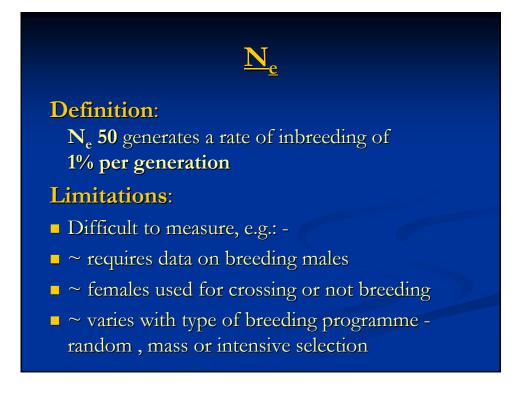
- <u>Numerical</u> (size of population) essential
- Geographical (range or distribution) essential
- **Genetic** (genetic erosion; loss of alleles) modifying
- Introgression (threatens breed integrity) precursor

Other dangers are <u>causal</u> (they influence primary indicators) -

- Demographic number/age of owners, etc
- Changing marketplace, disease threats

Numerical

Problem: e.g. threshold for pigs – EU 15000 sows; UK 1000 sows


Questions:

 Population in country of origin, or global population

- Registered animals or total population
 Options:
- <u>Effective population size</u> (N_e)
- Number of <u>breeding females</u>
- Number of <u>female replacements</u>

Females

Number of breeding females used by most organisations

- does not account for barreners, crossbreeding, perinatal losses, and other wastage
- **Number of female replacements** is a truer indication of the health of a breed
- rolling 3-year average of the number of female replacements also reflects trends

			<u>Nu</u>	meri	ical			
		deve	loped	from l	<u>rmonic</u> FAO cr	iteria		
	<u>Category</u>	<u>Cattle</u>	<u>Sheep</u>	<u>Goats</u>	Equines	<u>Pigs</u>	Poultry	
-	Critical	150	300	300	200	100	100	
	Action	1500	3000	3000	2000	1000	1000	
	Warning	3000	6000	6000	4000	2000	2000	

<u>Example Breeds – UK sheep</u>

Boreray

- <u>221</u> breeding ewes
- Numerically at risk (critical)

Rough Fell

- <u>15134</u> breeding ewes
- Not threatened numerically

Geographical indicator

 Most breeds evolved gradually in a locality to which they were adapted

- Many spread subsequently to other regions (commercial pressure, fashion or conservation policy)
- Some breeds, which may not be rare (i.e. not numerically scarce), remain in a restricted locality (geographically concentrated) and are at risk in the event of a disease epidemic.

Geographical Concentration

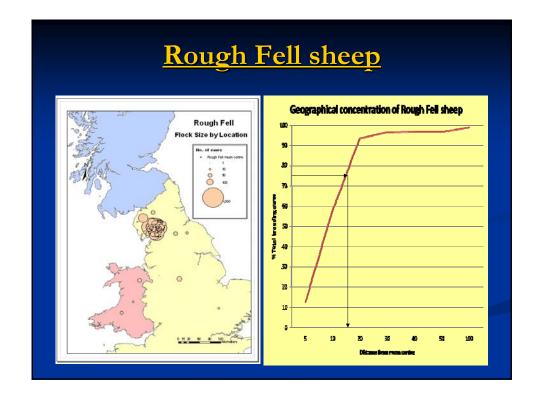
Procedure:

- Based on GIS and herd/flock data
- Developed, tested and applied in the UK by the University of Worcester and CLL.

<u>Criterion</u>:

>75% of population found within 25 km (action threshold) of the (MWC) mean weighted centre of the breed.

Geographical Concentration


Procedure:

Based on GIS and herd/flock data

Developed, tested and applied in the UK by the University of Worcester and CLL.

Criterion:

>75% of population found within 25 (50) km (action threshold) of the (MWC) mean weighted centre of the breed; wider testing necessary.

Example Breeds – UK sheep

Boreray

- <u>221</u> breeding ewes; <u>180 km</u> radius
- Numerically at risk (critical)
- Not threatened geographically

<u>Rough Fell</u>

- <u>15134</u> breeding ewes; <u>15 km</u> radius
- Not threatened numerically
- Geographically at risk (action)

Genetic indicator

Genetic erosion -

- Traditional Hereford

 loss of 18% alleles from 1960s to 1990s
- Vaynol cattle: (N_e 3.8); tested at 16 markers – homozygous at 7
- Chillingham cattle: tested at 23 markers – homozygous at 22

Inbred populations -

■ Holstein cattle (N_e <100), TB horses (CGI 28.15)

Genetic Erosion

Linebreeding (selective inbreeding) used by some breeders to concentrate the qualities of an elite ancestor

Inbreeding a danger

- ~ deleterious genes in founder population become homozygous
- ~ homozygosity reduces diversity and ability to adapt

Warning threshold: rate of inbreeding of 1% per generation (N_e 50)

Genetic Erosion

Introgression -

- The most serious cause of genetic erosion
- Results from official programmes (grading-up)
- or from unofficial (illicit) crossing.

Warning threshold: introgression of 2.5% in any generation

	<u>The</u> dicators		angerm	
Category	Numerical: breeding females"	Geographical: concentration^ km	Genetic: inbreeding* %	Genetic: introgression %
Warning	<2000-6000	<50	>1	>2.5
^ r a	nries according to idius of circle cor te of inbreeding j	ntaining 75% of	the breed	

Factors of Prioritisation

Probability of extinction

directly related to indicators of endangerment

Loss of genetic diversity

- measured by population genetics
- or by molecular genetics
- Other factors (special traits, commercial, cultural, landscape, catastrophic events, socio-ecological)

Probabi	<u>lity</u>	of	Extinction

<u>categ</u>	Pri orisation of	oritisation	~	<u>erment</u>
Category	Numerical: breeding females"	Geographical: concentration^ km	Genetic: inbreeding* %	Genetic: introgression %
Critical	<100-300	<12.5	>3	>12.5
Action	<1000-3000	<25	>2	>7.5
Warning	<2000-6000	<50	>1	>2.5

" varies according to species

- ^ radius of circle containing 75% of the breed
- * rate of inbreeding per generation

Probability of Extinction

Prioritisation by categorisation of indicators of endangerment

Numerical: breeding females	Geographical: concentration km	Genetic: inbreeding %	Genetic: introgression %
221	15	>3	>12.5

<u>Genetic Diversity</u>				
	between-breed	within-breed		
PigBioDiv1 BREED/LINE				
Local breeds	55.9			
International breeds		2.1		
Commercial lines	28.7	-0.5		
FRENCH BREED/LINE				
Local breeds	6 8 1			
FRBA01	14.86			
FRGA01	8.30	-0.50		
International breeds				
FRLW12		0.67		
FRPI02	3.57	0.22		
Commercial lines				
FRLW08	5.62	-0.39		
FRLA01	6.96	-0.17		

Local Breeds

Special traits:

- Local adaptation (N'dama and North Ronaldsay)
- Product quality
- ~ White Park beef Sir Loin
- ~ Basque pig Oteiza business

Landscape management – conservation grazing

<u>Undesirable traits</u>: VRQ scrapie allele

Historical value (many native breeds):

- Local tradition and history
- Tourism and local crafts

Factors of Prioritisation

Take all factors into account

- 1) **Probability of extinction** essential
- 2) Genetic diversity across species (maybe based on index of between- and within-breed diversity) – modifying
- 3) Special traits of local breeds modifying

Harmonisation in Europe

Breed definitions

– harmonisation possible and agreed

Indicators of endangerment

– harmonisation possible and likely

Factors of prioritisation

harmonisation possible but not in the immediate future

